Thursday, February 26, 2009

Heat and Ventilation

The plant thrives best out of doors in a dry temperature of 75 to 85° F., or even up to 95° F., if the air is not too dry and is in gentle circulation. The rate of growth diminishes as the temperature falls below 75° until at 50° there is practically no growth; the plant is simply living at a poor dying rate and if the growth, particularly in young plants, is checked in this way for any considerable time they will never produce a full crop of fruit, even if the plants reach full size and are seemingly vigorous and healthy.

The plant is generally killed by exposure for even a short time to freezing temperature, though young volunteer plants in the spring are frequently so hardened by exposure that they will survive a frost that crusts the ground they stand in; but such exposure affects the productiveness of the plant, even if it subsequently makes a seemingly vigorous and healthy growth. Under glass, plants usually do best in a temperature somewhat lower than is most desirable out of doors. I think this is due to the inevitable obstruction of the sunlight and the lack of perfect ventilation.

Monday, February 23, 2009

Grape Tomatoes

Universally regarded as a distinct species. Plant strong, growing with many long, slender, weak branches which are not so hairy, viscid, or ill-smelling, and never become so hard or woody as those of the other species. The numerous leaves are very bright green in color, leaflets small, nearly entire, with many small stemless ones between the others. Fruit produced continuously and in great quantity on long racemes like those of the currant, though they are often branched. They continue to elongate and blossom until the fruit at the upper end is fully ripened. Fruit small, less than ½ inch in diameter, spherical, smooth and of a particularly bright, beautiful red color which contrasts well with the bright green leaves, and this abundance of beautifully colored and grace fully poised fruit makes the plant worthy of more general cultivation as an ornament, though the fruit is of little value for culinary use. This species, when pure, has not varied under cultivation, but it readily crosses with other species and with our garden varieties, and many of these owe their bright red color to the influence of crosses with the above species.

Saturday, February 21, 2009

Mosaic disease

The tomato is occasionally subject to a trouble allied to the mosaic disease of tobacco. It is characterized by a variegation of the leaves into light and dark green areas, usually accompanied by distortion and reduction in size. In severe cases a whole field may become worthless. While the nature of this malady is not fully understood, it is known to be due to a disordered nutrition of the young leaf-cells. It can be produced by severe pruning or by mutilation of the roots in transplanting, both of which should be carefully avoided. It is more likely to occur in seedlings that have made a soft, rapid growth on account of an excess of nitrogenous fertilizer or too high temperature. Close, clayey soils, on account of their poor physical condition, also favor the development of the disease after transplanting.

Thursday, February 19, 2009

Tomato Gardener: Using a Trellis in a Home Garden

In the home garden trellising and pruning are often very desirable, as they enable us not only to produce more fruit in a given area but of better quality. Many forms of trellis, have been recommended. Where the plants are to be pruned as well as supported, as they should always be in gardens, there is nothing better than the single stake, as described above. For a trellis without pruning, one to three stout hoops supported by three stakes so as to surround the plant which is allowed to grow through and fall over them, or two or more parallel strips supported about a foot from the ground on each side of a row of plants answer the purpose, which is simply to keep the plant up from the ground and facilitate the free circulation of the air among leaves and fruit.

I have seen tomatoes grown very successfully by the side of an open fence. Two stakes were driven into the ground about 6 inches from the fence and the plant, but slanting outward and away from each other. The tops of the stakes were fastened to the fence by wooden braces, and then heavy strings fastened to the fence around the stakes and back to the fence, the whole with the fence forming a sort of inverted pyramidal vase about 3 feet across at the top. In this the plant was allowed to grow, but it would be essential to success that the fence be an open one.

Sunday, February 15, 2009

Tomatoes and Sunlight

Abundant and unobstructed sunlight is the most essential condition for the healthy growth of the tomato. It is a native of the sunny South and will not thrive except in full and abundant sunlight. I have never been able to grow good tomatoes in the shade even where it is only partial. The entire plant needs the sunlight. The blossoms often fail to set and the fruit is lacking in flavor because of shade, from excessive leaf growth, or other obstruction.

The great difficulty in winter forcing tomatoes under glass in the North comes from the want of sunlight during the short days of the winter months. Were it not for the short winter days of the higher latitudes limiting the hours of sunshine, tomatoes could be grown under glass in the northern states to compete in price, when the better quality of vine-ripened fruits is considered, with those from the Gulf states. Growers are learning that tomatoes can be profitably grown under glass during the longer spring days, and consumers are beginning to appreciate the superior quality of fruit ripened on the vine over that picked green and ripened in transit. At no time is this need of abundance of light of greater importance than when the plants are young and, if they fail to receive it, no subsequent favorable conditions will enable them to recover fully from its ill effects. It is not so much the want of room for the roots as of light for the leaves that makes the plants which have been crowded in the seed-beds so weak and unprofitable.

Friday, February 13, 2009

Tomato Plant Blossoms

The inflorescence of the tomato is usually abundant and it is rare that a plant does not produce sufficient blooms for a full crop. The flowers are perfect as far as parts are concerned and in bright, sunny weather there is an abundance of pollen, but sunlight and warmth are essential to its maturing into a condition in which it can easily reach the stigma. The structure and development of the flower are such that while occasionally, particularly in healthy plants out of doors, the stigma becomes receptive and takes the pollen as it is pushed out through the stamen tube by the elongating style, it is more often pushed beyond them before the pollen matures, so that the pollen has to reach the stigma through some other means. Usually this is accomplished by the wind, either directly or through the motion of the plants.

Under glass it is generally necessary to assist the fertilization either directly by application or by motion of the plant, this latter only being effective in the middle of a bright sunny day. In the open ground in cold, damp weather the flowers often fail of fertilization, in which case they drop, and this is often the first indication of a failing of the crop on large, strong vines. I have known of many cases where the yield of fruit from large and seemingly very healthy vines was very light because continual rains prevented the pollenization of the flowers. Such failures, however, do not always come from a want of pollen but may result from an over or irregular supply of water either at the root or in the air, imperfectly balanced food supply, a sapping of the vitality of the plants when young, or from other causes. Insects rarely visit tomato flowers and are seldom the means of their fertilization.

Thursday, February 12, 2009

Leaf Curl

The effect of pruning is to stimulate growth and to increase the size of the leaves, the effort of the plant being to maintain a balance between roots and foliage. With rapidly growing plants, especially in the greenhouse and garden where both high manuring and pruning have been practiced, more or less curling and distortion of the leaves may result without developing into serious trouble if the grower takes the hint and modifies his methods so as to permit a more balanced growth. On the other hand, the ill effects of over-feeding and pruning may reach a point where the plant is seriously crippled.

Wednesday, February 11, 2009

Plant Roots

The roots of the tomato plant, while abundant in number, are short and can only gather food and water from a limited area. A plant of garden bean, for instance, is not more than half the size of one of the tomato, but its roots extend through the soil to a greater distance, gather plant food from a greater bulk of soil, seem better able to search out and gather the particular food element which the plant needs than do those of the tomato. This characteristic of the latter plant makes the composition of the soil as to the proportion of easily available food elements of great importance. Tomato roots are also exceedingly tender and incapable of penetrating a hard and compact soil, so that the condition of the soil as to tilth is of greater importance with regard to tomatoes than with most garden vegetables.

Another characteristic of the tomato roots is that the period of their active life is short. When young they are capable of transmitting water and nutritive material very rapidly, but they soon become clogged and inefficient to such an extent as to result in the starvation and death of the plant. If the branches of such an exhausted plant be bent over and covered with earth they will frequently start new roots and produce a fresh crop of fruit, or if plants which have made a crop in the greenhouse be transplanted to the garden and cut back, a new set of roots will often develop and the plant will produce a second crop of fruit which, in amount, often equals or exceeds the first one. But such growths come only from new roots springing from the stem—never from an extension of the old root system.

Tuesday, February 10, 2009

Growing Tomatoes in a Hotbed


Tomato plants can be advantageously started and even grown on to the size for setting in open ground in hotbeds. In building these of manure it is important to select a spot where there is no danger of standing water, even after the heaviest rains, and it is well to remove the soil to a depth of 6 inches or 1 foot from a space about 2 feet larger each way than the bed and to build the manure up squarely to a height of 2 to 3 feet. It is also very important that the bed of manure be of uniform composition as regards mixture of straw and also as to age, density and moisture, so as to secure uniformity in heating. This can be accomplished by shaking out and evenly spreading each forkful and repeatedly and evenly tramping down as the bed is built up. Unless this work is well and carefully done the bed will heat and settle unevenly, making it impossible to secure uniformity of growth in different parts.

Hotbed frames should be of a size to carry four to six 3x6-foot sash, and made of lumber so fastened together that they can be easily knocked apart and stored when not in use. They should be about 10 inches high in front and 16 or 18 inches at the back, care being taken that if the back is made of two boards one of them be narrow and at the bottom so that the crack between them can be covered by banking up with manure or earth. In placing them on the manure short pieces of board should be laid under the corners to prevent their settling in the manure unevenly. I prefer to sow the seed in flats or shallow boxes filled with rich but sandy and very friable soil, and set these on a layer of sifted coal ashes covering the manure and made perfectly level, but many growers sow on soil resting directly on the manure; if this is done the soil should be light and friable and made perfectly level.


In some sections, particularly in the US South, it is not always easy to procure suitable manure for making hotbeds, so these are built to be warmed by flues under ground, but I think it much better where a fire is to be used that the sash be built into the form of a house. A hotbed of manure is preferred to a house by some because of its supplying uniform and moist bottom heat—and one can easily give abundant air; but the sash can be built into the form of a house at but little more expense, and it has the great advantage of enabling one to work among the plants in any weather, while, if properly built, any desired degree of heat and ventilation can be easily secured. Except when very early ripening fruit is the desideratum, plants started with heat but pricked out and grown in cold-frames without it, but where they can be protected during cold nights and storms, will give better results than those grown to full size for the field in artificial heat.

Soil For Early Ripening Fruit

Sometimes the profit and satisfaction from a tomato crop depend more largely upon the earliness of ripening than upon the amount of yield or cost of growing. In such cases a warm, sandy loam, or even a distinctly sandy soil, is to be preferred, as this is apt to be warmer and the fruit will be matured much earlier on it than on a heavier soil. It is essential, however, that it be well drained and warm. Often lands classed as sandy are really colder than some of those classed as clay, and such soils should be carefully avoided if early maturity is important.

Monday, February 9, 2009

Cracking of the Fruit

The formation of cracks or fissures in the nearly mature fruit is due to variations in the water supply and other conditions affecting growth at this stage. If after the development of the outer portion of the fruit has been checked by drought there follows a period of abundant water supply and rapid growth, the fruit expands more rapidly than its epidermis and the latter is ruptured. Some varieties of tomatoes are much less subject to this trouble than others and should be given preference on this account. The grower, so far as lies in his power, should seek to maintain an uninterrupted growth by thorough preparation of the land, by cultivation or by mulching. If the half-grown fruits are enclosed in paper bags, cracking may be prevented, but at the risk of loss of flavor in the ripened fruit.

Shedding of Blossoms

The tomato is very liable to drop its buds and blossoms and in some instances partial or total crop failures have resulted. The principal causes are an over-rapid growth, due in many cases to an excess of nitrogenous fertilizers, unfavorable weather conditions, especially cold winds, continued rainy or moist weather, which hinders pollination, lack of sunlight, or extremely hot weather. Such shedding can be partially controlled by pruning away the lateral branches as soon as formed and topping the plants after the third cluster of fruit has set, and by a reduction in the use of nitrogenous fertilizers. A failure to set fruit in the greenhouse is often due to lack of pollination, which must be remedied by hand pollination.

Tomato Plant Roots

The roots of the tomato plant, while abundant in number, are short and can only gather food and water from a limited area. A plant of garden bean, for instance, is not more than half the size of one of the tomato, but its roots extend through the soil to a greater distance, gather plant food from a greater bulk of soil, seem better able to search out and gather the particular food element which the plant needs than do those of the tomato. This characteristic of the latter plant makes the composition of the soil as to the proportion of easily available food elements of great importance. Tomato roots are also exceedingly tender and incapable of penetrating a hard and compact soil, so that the condition of the soil as to tilth is of greater importance with regard to tomatoes than with most garden vegetables.

Another characteristic of the tomato roots is that the period of their active life is short. When young they are capable of transmitting water and nutritive material very rapidly, but they soon become clogged and inefficient to such an extent as to result in the starvation and death of the plant. If the branches of such an exhausted plant be bent over and covered with earth they will frequently start new roots and produce a fresh crop of fruit, or if plants which have made a crop in the greenhouse be transplanted to the garden and cut back, a new set of roots will often develop and the plant will produce a second crop of fruit which, in amount, often equals or exceeds the first one. But such growths come only from new roots springing from the stem—never from an extension of the old root system.

Life of the Tomato Plant

The tomato could be described as a short-lived perennial, but its span of life is somewhat variable. Under favorable conditions it will develop from starting seed to first ripe fruit in from 85 to 120 days of full sunshine with a constant day temperature of from 75 to 90° F., and with one from 15 to 20° F. lower at night. The plants will ordinarily continue in full fruit for about 50 to 60 days, after which they generally become so exhausted by excessive production of fruit and the effects of diseases to which they are usually subject that their root action and sap circulation become weaker and weaker until they die from starvation. From Philadelphia southward gardeners expect that spring set plants will thus exhaust themselves and die by late summer, and they sow seed in late spring or early summer for plants on which they depend for late summer and fall crops.

Under some conditions, particularly in the Gulf states and in California, tomato plants will not only grow to a much greater size than normal, but will continue to thrive and bear fruit for a longer time. Such a plant grown in Pasadena, Cal., was said to have been in constant bearing for over 10 months. Again, sometimes plants that have produced a full crop of fruits will start new sets of roots and leaves and produce a second and even a third crop, each, however, being produced on new branches and as a result of a fresh set of roots, those which produced the preceding crop having died and disappeared. The period of development, 85 to 120 days of full sunshine at a temperature above 75° F., has been given. The full sunshine and high temperature are essential to such rapid development, and in so far as there is a lack of sunshine from clouds or shade, or the day temperature falls below 75° F. the period will be lengthened, so that in the greater part of the United States the elapsed time between starting seed to ripened fruit is usually as much as from 120 to 150 days and often even longer.

Common Varieties

Different types now common, according to Sturtevant, have become known to, and been described by Europeans in about the following order:

1. Large yellow, described by Matthiolus in 1554 and called Golden apple.
2. Large red, described by Matthiolus in 1554 and called Love apple.
3. Purple red, described by D'el Obel in 1570.
4. White-fleshed, described by Dodoens in 1586.
5. Red cherry, described by Bauhin in 1620.
6. Yellow cherry, described by Bauhin in 1620.
7. Ochre yellow, described by Bauhin in 1651.
8. Striped, blotched or visi-colored, described by Bauhin in 1651.
9. Pale red, described by Tournefort in 1700.
10. Large smooth, or ribless red, described by Tournefort in 1700.
11. Bronzed-leaved, described by Blacknell in 1750.
12. Deep orange, described by Bryant in 1783.
13. Pear-shaped, described by Dunal in 1805.
14. Tree tomato, described by Vilmorin in 1855.
15. Broad-leaved, introduced about 1860.

The special description of No. 10 by Tournefort in 1700 would indicate that large smooth sorts, like Livingston's Stone, were in existence fully 200 years ago, instead of being modern improvements, as is sometimes claimed; and a careful study of old descriptions and cuts and comparing them with the best examples of modern varieties led Doctor Sturtevant in 1889 to express the opinion that they had fruit as large and smooth as those we now grow, before the tomato came into general use in America, and possibly before the fruit was generally known to Europeans. Even the production of fine fruit under glass is not so modern as many suppose. In transactions of the London Horticultural Society for 1820, John Wilmot is reported to have cultivated under glass in 1818 some 600 plants and gathered from his entire plantings under glass and in borders some 130 bushels of ripe fruit. It is stated that the growth that year exceeded the demand, and that the fruit obtained was of extraordinary size, some exceeding 12 inches in circumference and weighing 12 ounces each. Thomas Meehan states in Gardeners' Monthly for February, 1880, that on January 8, of that year, he saw growing in the greenhouses on Senator Cannon's place near Harrisburg, Pa., at least 1 bushel of ripe fruits, none of which were less than 10 inches in circumference,—a showing which compares with the best to be seen to-day.

Throughout southern Europe the value of the fruit for use in soups and as a salad seems to have been at once recognized, and it came into quite general use, especially in Spain and Italy, during the 17th century; but in northern Europe and England, though the plant was grown in botanical gardens and in a few private places as a curiosity and for the beauty of its fruit, this was seldom eaten, being commonly regarded as unhealthy and even poisonous, and on this account, and probably because of its supposed aphrodisiacal qualities, it did not come into general use in those northern countries until early in the 19th century.

Origin of the Name

The name tomato is of South American origin, and is derived from the Aztec word xitomate, or zitotomate, which is given the fruit of both the Common tomato and that of the Husk or Strawberry tomato or Physalis. Both vegetables were highly prized and extensively cultivated by the natives long before the discovery of the country by Europeans, and there is little doubt that many of the plants first seen and described by Europeans as wild species were really garden varieties originated with the native Americans by the variation or crossing of the original wild species.

Pear Tomatoes


Plant exceptionally vigorous, with comparatively few long, stout stems inclined to ascend. Leaves numerous, broad, flat, with a distinct bluish-green color noticeable, even in the cotyledons. Fruit abundant, borne in short branched or straight clusters of five to ten fruits. It is perfectly smooth, without sutures, and of the shape of a long, slender-necked pear, not over an inch in transverse by 1½ inches in longitudinal diameter. When the stock is pure the fruit retains this form very persistently. The production of egg-shaped or other forms is a sure indication of impure stock. They are bright red, dark yellow, or light yellowish white in color, two-celled, with very distinct central placenta and comparatively few and large seeds. The fruit is inclined to ripen unevenly, the neck remaining green when the rest of the fruit is quite ripe. It is less juicy than that of most of our garden sorts but of a mild and pleasant flavor. This is considered, by many, to be simply a garden variety, but I am inclined to the belief that it is a distinct species and that the contrary view comes from the study of the impure and crossed stocks resulting from crosses between the true Pear tomato and garden sorts which are frequently sold by seedsmen as pear-shaped. Many garden sorts—like the Plum (Fig. 8), the Egg, the Golden Nugget, Vick's Criterion, etc.—are known to have originated from crosses of the Pear and I think that most, if not all, the garden sorts in which the longitudinal diameter of the fruit is greater than its transverse diameter owe this form to crosses with L. pyriforme.

Cherry Tomatoes


Plant vigorous, with stout branches which are distinctly trailing in habit. Leaves flat or but slightly curled. Fruit very abundant, borne in short, branched clusters, globular, perfectly smooth, with no apparent sutures. From ½ to ¾ inch in diameter and either red or yellow in color, two-celled with numerous comparatively small, kidney-shaped seeds. Many of our garden varieties show evidence of crosses with this species, and by many it is regarded as the original wild form of all of our cultivated sorts. These, when they escape from cultivation and become wild plants, as they often do, from New Jersey southward, produce fruit which, in many respects, resembles that of this species in size and form; but they are generally more flattened, globe-shaped, with more or less distinct sutures on the upper side, and I have never seen any fruit of these wild plants which could not be readily distinguished from that of the true Cherry tomato.

Prof. P. H. Rolfs, Director of the Florida experiment station, reports that among the millions of volunteer, or wild, tomatoes he has seen growing in the abandoned tomato fields in Florida, he has never seen a plant with fruit which could not be easily distinguished from that of the true Cherry tomato. Again, one can, by selection and cultivation, easily develop from these wild forms plants producing fruit as large and often practically identical with that of our cultivated varieties, while I have given a true stock of Cherry tomato most careful cultivation on the best of soil for 20 consecutive generations without any increase in size or change in character of the fruit.

Currant Tomatoes


Universally regarded as a distinct species. Plant strong, growing with many long, slender, weak branches which are not so hairy, viscid, or ill-smelling, and never become so hard or woody as those of the other species. The numerous leaves are very bright green in color, leaflets small, nearly entire, with many small stemless ones between the others. Fruit produced continuously and in great quantity on long racemes like those of the currant, though they are often branched. They continue to elongate and blossom until the fruit at the upper end is fully ripened. Fruit small, less than ½ inch in diameter, spherical, smooth and of a particularly bright, beautiful red color which contrasts well with the bright green leaves, and this abundance of beautifully colored and grace fully poised fruit makes the plant worthy of more general cultivation as an ornament, though the fruit is of little value for culinary use. This species, when pure, has not varied under cultivation, but it readily crosses with other species and with our garden varieties, and many of these owe their bright red color to the influence of crosses with the above species.

Tomato Plant Flowers


The flowers are pendant and borne in more or less branched clusters, located on the stem on the opposite side and usually a little below the leaves; the first cluster on the sixth to twelfth internode from the[Pg 2] ground, with one on each second to sixth succeeding one. The flowers (Fig. 2) are small, consisting of a yellow, deeply five-cleft, wheel-shaped corolla, with a very short tube and broadly lanceolate, recurving petals. The calyx consists of five long linear or lanceolate sepals, which are shorter than the petals at first, but are persistent, and increase in size as the fruits mature. The stamens, five in number, are borne on the throat of the corolla, and consist of long, large anthers, borne on short filaments, loosely joined into a tube and opening by a longitudinal slit on the inside, and this is the chief botanical distinction between[Pg 3] this genus and Solanum to which the potato, pepper, night shade and tobacco belong. The anthers in the latter genus open at the tip only. The two genera, however, are closely related and plants belonging to them are readily united by grafting. The Physalis, Husk tomato or Ground cherry is quite distinct, botanically. The pistils of the true tomato are short at first, but the style elongates so as to push the capitate stigma through the tube formed by the anthers, this usually occurring before the anthers open for the discharge of the pollen. The fruit is a two to many-celled berry with central fleshy placenta and many small kidney-shaped seeds which are densely covered with short, stiff hairs, as seen in Figs. 3 and 4.

Botany of the Tomato

The common tomato of our gardens belongs to the natural order Solanaceae and the genus Lycopersicum. The name from lykos, a wolf, and persica, a peach, is given it because of the supposed aphrodisiacal qualities, and the beauty of the fruit. The genus comprises a few species of South American annual or short-lived perennial, herbaceous, rank-smelling plants in which the many branches are spreading, procumbent, or feebly ascendent and commonly 2 to 6 feet in length, though under some conditions, particularly in the South and in California, they grow much longer. They are covered with resinous viscid secretions and are round, soft, brittle and hairy, when young, but become furrowed, angular, hard and almost woody with enlarged joints, when old. The leaves are irregularly alternate, 5 to 15 inches long, petioled, odd pinnate, with seven to nine short-stemmed leaflets, often with much smaller and stemless ones between them. The larger leaflets are sometimes entire, but more generally notched, cut, or even divided, particularly at the base.